Practical Attribute-Based Encryption: Traitor Tracing, Revocation and Large Universe
نویسندگان
چکیده
In Ciphertext-Policy Attribute-Based Encryption (CP-ABE), a user’s decryption key is associated with attributes which in general are not related to the user’s identity, and the same set of attributes could be shared between multiple users. From the decryption key, if the user created a decryption blackbox for sale, this malicious user could be difficult to identify from the blackbox. Hence in practice, a useful CP-ABE scheme should have some tracing mechanism to identify this ‘traitor’ from the blackbox. In addition, being able to revoke compromised keys is also an important step towards practicality, and for scalability, the scheme should support an exponentially large number of attributes. However, none of the existing traceable CP-ABE schemes simultaneously supports revocation and large attribute universe. In this paper, we construct the first practical CP-ABE which possesses these three important properties: (1) blackbox traceability, (2) revocation, and (3) supporting large universe. This new scheme achieves the fully collusion-resistant blackbox traceability, and when compared with the latest fully collusion-resistant blackbox traceable CP-ABE schemes, this new scheme achieves the same efficiency level, enjoying the sub-linear overhead of O( √ N), where N is the number of users in the system, and attains the same security level, namely, the fully collusion-resistant traceability against policy-specific decryption blackbox, which is proven in the standard model with selective adversaries. The scheme supports large attribute universe, and attributes do not need to be pre-specified during the system setup. In addition, the scheme supports revocation while keeping the appealing capability of conventional CP-ABE, i.e. it is highly expressive and can take any monotonic access structures as ciphertext policies. We also present the analogous results in the Key-Policy Attribute-Based Encryption (KP-ABE) setting, where users’ description keys are described by access policies and ciphertexts are associated with attributes. We construct the first practical KP-ABE which possesses the three important properties: (1) blackbox traceability, (2) revocation, and (3) supporting large universe. The scheme is highly expressive and can take any monotonic access structures as key policies, and is efficient, namely, enjoys the sub-linear overhead of O( √ N) while supporting fully collusion-resistant blackbox traceability and revocation, and does not need to pre-specify the attributes during the system setup. The scheme is proven selectively secure in the standard model.
منابع مشابه
Generic Codes Based Traitor Tracing Scheme with Revocation Ability from Attributes Based Encryption
Traitor tracing is needed because some users in broadcast encryption system may give out their decryption keys to construct pirate decoders. Many codes based traitor tracing scheme were proposed. However, as stated by Billet and Phan in ICITS 2008, they lack of revocation ability. We provide a generic scheme of codes based traitor tracing with revocation ability, based on ciphertextpolicy attri...
متن کاملCodes Based Tracing and Revoking Scheme with Constant Ciphertext
In broadcast encryption system certain users may leak their decryption keys to build pirate decoders, so traitor tracing is quite necessary. There exist many codes based traitor tracing schemes. As pointed out by Billet and Phan in ICITS 2008, these schemes lack revocation ability. The ability of revocation can disable identified malicious users and users who fail to fulfill the payments, so th...
متن کاملA Public-Key Traitor Tracing Scheme with Revocation Using Dynamic Shares
We proposed a new public-key traitor tracing scheme with revocation capability using the dynamic share and entity revocation techniques. The enabling block of our scheme is independent of the number of subscribers, but dependent on the collusion and revocation thresholds. Each receiver holds one decryption key only. Our traitor tracing algorithm works in a black-box way and is conceptually simp...
متن کاملAttribute based Encryption: Traitor Tracing, Revocation and Fully Security on Prime Order Groups
A Ciphertext-Policy Attribute-Based Encryption (CP-ABE) allows users to specify the access policies without having to know the identities of users. In this paper, we contribute by proposing an ABE scheme which enables revoking corrupted users. Given a key-like blackbox, our system can identify at least one of the users whose key must have been used to construct the blackbox and can revoke the k...
متن کاملDoS-Resistant Attribute-Based Encryption in Mobile Cloud Computing with Revocation
Security and privacy are very important challenges for outsourced private data over cloud storages. By taking Attribute-Based Encryption (ABE) for Access Control (AC) purpose we use fine-grained AC over cloud storage. In this paper, we extend previous Ciphertext Policy ABE (CP-ABE) schemes especially for mobile and resource-constrained devices in a cloud computing environment in two aspects, a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. J.
دوره 59 شماره
صفحات -
تاریخ انتشار 2014